Any linear current network which may be viewed from two terminals can be replaced by a current-source equivalent circuit comprising a single current source I and a single shunt admittance Y. The current I is the short-circuit current between the two terminals and the admittance Y is the admittance of the network viewed from the terminals with all current sources replaced by their internal admittances.
Norton's Theorem states that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single current source and parallel resistance connected to a load. Just as with Thevenin's Theorem, the qualification of “linear” is identical to that found in the Superposition Theorem: all underlying equations must be linear (no exponents or roots).
Norton's Theorem states that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single current source and parallel resistance connected to a load. Just as with Thevenin's Theorem, the qualification of “linear” is identical to that found in the Superposition Theorem: all underlying equations must be linear (no exponents or roots).
No comments:
Post a Comment